It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Link to Source
Hiroshima 1945/Hiroshima 2006 ( photo der.: Voogd075 )
I did not know that the american southwest had so many detonations.
Probably the most serious threat is cesium-137, a gamma emitter with a half-life of 30 years. It is a major source of radiation in nuclear fallout, and since it parallels potassium chemistry, it is readily taken into the blood of animals and men and may be incorporated into tissue. Other hazards are strontium-90, an electron emitter with a half-life of 28 years, and iodine-131 with a half-life of only 8 days. Strontium-90 follows calcium chemistry, so that it is readily incorporated into the bones and teeth, particularly of young children who have received milk from cows consuming contaminated forage. Iodine-131 is a similar threat to infants and children because of its concentration in the thyroid gland. In addition, there is plutonium-239, frequently used in nuclear explosives. A bone-seeker like strontium-90, it may also become lodged in the lungs, where its intense local radiation can cause cancer or other damage.
Plutonium-239 decays through emission of an alpha particle (helium nucleus) and has a half-life of 24,000 years. To the extent that hydrogen fusion contributes to the explosive force of a weapon, two other radionuclides will be released: tritium (hydrogen-3), an electron emitter with a half-life of 12 years, and carbon-14, an electron emitter with a half-life of 5,730 years. Both are taken up through the food cycle and readily incorporated in organic matter.
A U.N. scientific committee has estimated that the cumulative per capita dose to the world's population up to the year 2000 as a result of atmospheric testing through 1970 (cutoff date of the study) will be the equivalent of 2 years' exposure to natural background radiation on the earth's surface. For the bulk of the world's population, internal and external radiation doses of natural origin amount to less than one-tenth rad annually. Thus nuclear testing to date does not appear to pose a severe radiation threat in global terms. But a nuclear war releasing 10 or 100 times the total yield of all previous weapons tests could pose a far greater worldwide threat. The biological effects of all forms of ionizing radiation have been calculated within broad ranges by the National Academy of Sciences. Based on these calculations, fallout from the 500-plus megatons of nuclear testing through 1970 will produce between 2 and 25 cases of genetic disease per million live births in the next generation.
This means that between 3 and 50 persons per billion births in the post-testing generation will have genetic damage for each megaton of nuclear yield exploded. With similar uncertainty, it is possible to estimate that the induction of cancers would range from 75 to 300 cases per megaton for each billion people in the post-test generation.