It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Even if one assumes Hawking is wrong and that black holes are more stable than that, the tiny black holes would pose no danger. Because the microscopic black holes would be created within a particle accelerator, they should keep enough speed to escape from Earth's gravity. Moreover, if any get trapped, they are so tiny it would take each one more than the current age of the universe to destroy even a milligram of Earth matter
Still, conventional physics suggest it would take a quadrillion, or a million-billion, times more energy to form a microscopic black hole than the Large Hadron Collider is capable of, so even a third of that is beyond human reach
Originally posted by Trackhunter
Creating microscopic black holes using particle accelerators requires less energy than previously thought, researchers say. If physicists do succeed in creating black holes with such energies on Earth, the achievement could prove the existence of extra dimensions in the universe, physicists noted. Any such black holes would pose no risk to Earth, however, scientists added. Black holes possess gravitational fields so powerful that nothing can escape, not even light. The holes normally form when the remains of a dead star collapse under their own gravity, squeezing their mass together.
A number of theories about the universe suggest the existence of extra dimensions ofreality , each folded up into sizes ranging from as tiny as a proton to as big as a fraction of a millimeter. At distances comparable to the sizes of these extra dimensions, these models suggest gravity may become far stronger than normal. As such, atom smashers could cram enough energy together to generate black holes. Source - www.livescience.com...
If this form of the theory were right, the LHC should have been able to produce small black holes that would instantly decay (and not, as some had feared, devour the Earth). But a look at the data obtained by CMS shows that a signature of the black holes’ decay is notably absent.