It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Get ready for a fascinating eating experience in the center of our galaxy. The event involves a black hole that may devour much of an approaching cloud of dust and gas known as G2. A supercomputer simulation prepared by two Lab physicists and a former postdoc suggests that some of G2 will survive, although its surviving mass will be torn apart, leaving it with a different shape and questionable fate. Three-dimensional, volume visualization spanning the period 2010 to 2020, of the gas and dust cloud as it approaches the Sgr A* black hole near the center of the Milky Way galaxy. High Resolution Image The findings are the work of computational physicist Peter Anninos and astrophysicist Stephen Murray, both of AX division within the Weapons and Complex Integration Directorate (WCI), along with their former postdoc Chris Fragile, now an associate professor at the College of Charleston in South Carolina, and his student, Julia Wilson. They came up with six simulations, using the Cosmos++ computer code developed by Anninos and Fragile, which required more than 50,000 computing hours on 3,000 processors on the Palmetto supercomputer at Clemson University's Tech Center in Anderson, S.C. Previous simulations of the upcoming event had been done in two-dimensions, but the Cosmos++ code includes 3D capability, as well as a unique "moving mesh" enhancement, allowing the simulation to more-efficiently follow the cloud's progression toward the black hole. The black hole is known as Sgr A*. "Sgr" is the abbreviation for Sagittarius, the constellation near the center of the Milky Way. Most galaxies have a black hole at their center, some thousands of times bigger than this one. "While this one is 3-to-4 million times as big as our sun, it has been relatively quiet," according to Murray. "It's not getting fed very much." Contrary to their name, black holes can appear very bright. That's because gas orbiting them loses energy via friction, getting hotter and brighter as it spirals inward before falling into the black hole. The composition of the G2 cloud is still a mystery.