It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Sunspot 1583 is in a near-constant state of eruption. Magnetic instabilities in the sunspot's magnetic canopy are hurling massive "puffs" of magnetized plasma into space. The Solar and Heliospheric Observatory caught some of them emerging during the early hours of Oct. 2nd; click to set the scene in motion:
Observing an HFA on Venus will help scientists tease out how space weather is similar and different at this planet so foreign to our own. With no magnetic field to interact with, space weather at Venus is milder than that at Earth, but occurs much closer to the surface.
"Hot flow anomalies average one a day near Earth," says Goddard scientist Glyn Collinson and the first author on the new paper. "They've been seen at Saturn, they may have been seen at Mars, and now we're seeing them at Venus. But at Venus, since there's no protective magnetic field, the explosion happens right above the surface of the planet."
Source
The bow shock on Venus serves as the boundary between the incoming solar wind, and the planet's own ionosphere – a layer of atmosphere filled with charged particles. This boundary changes in height easily in response to the environment, and so the scientists believe it would also respond strongly in the presence of an HFA. Since the HFA causes material to flow sunward, away from the planet, it may operate almost like a vacuum cleaner, pulling that bow shock further away from Venus. The size of the ionosphere would swell in concert.
It never occurred to me that we could get a CME we'd actually be able to see with our eyes on space imagery.