It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
From tunneling to entanglement, the special properties of the quantum realm allow events to unfold at speeds and efficiencies that would be unachievable with classical physics alone. Could quantum mechanisms be driving some of the most elegant and inexplicable processes of life? For years experts doubted it: Quantum phenomena typically reveal themselves only in lab settings, in vacuum chambers chilled to near absolute zero. Biological systems are warm and wet. Most researchers thought the thermal noise of life would drown out any quantum weirdness that might rear its head.
Specifically, the team examined the protein scaffold connecting the bacteria’s external solar collectors, called the chlorosome, to reaction centers deep inside the cells. Unlike electric power lines, which lose as much as 20 percent of energy in transmission, these bacteria transmit energy at a staggering efficiency rate of 95 percent or better.
The secret, Fleming and his colleagues found, is quantum physics.
When green light passes into the bird's eye, it hits cryptochrome, which gives an energy boost to one of the electrons of an entangled pair, separating it from its partner. In its new location, the electron experiences a slightly different magnitude of Earth's magnetic field, and this alters the electron's spin. Birds can use this information to build an internal map of Earth's magnetic field to figure out their position and direction.
But scientists realized that some odor molecules that have identical shapes have completely different smells, due to a minute chemical change, such as a single hydrogen atom in the molecule being replaced by a heavier version of hydrogen called deuterium. While this affects the weight of the molecule, it doesn't change its shape, so it still fits into the receptor molecule in exactly the same way.
How, then, can olfactory systems sense the difference? The answer may lie in quantum particles' ability to act like waves.
Added: Mar 09, 2010 1:14 pm
DARPA is soliciting innovative research proposals in the area of quantum effects in a biological environment. Proposed research should establish beyond any doubt that manifestly quantum effects occur in biology, and demonstrate through simulation proof-of concept experiments that devices that exploit these effects could be developed into biomimetic sensors.