It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
"melt a layer of lunar material within the excavated tunnel to a depth of only a few inches. This molten material could then be cooled to form a rigid ceramic material suitable for lining the interior of the tunnel."
The Texas A&M designers considered a couple of different muck disposal schemes. The two variants of the first called for the muck to be transferred vertically to the surface and either dumped or "sprayed" into a tailings pile. The second concept called for the use of special, tunnel dump trucks that would carry the muck out of the tunnel and dump it on the lunar surface. The designers recommend use of a SP-100 fission reactor for power, using liquid lithium heat pipes of the sort developed by the Los Alamos National Laboratory for the nuclear subterrene. A second Texas A&M study, released in May 1988, also recommended use of a lithium cooled nuclear reactor as the power source for a lunar tunneler. In the second tunneler design, there are no mechanical tunneling components. Instead, the cone-shaped, nuclear powered tunneler melts its way through the subsurface like a subterrene. Some of the melted rock and soil is plastered against the tunnel walls to form a glass-like ceramic tunnel lining. The rest of the melted muck (called regolith) is passed out of the back of the tunneler and then carried to the surface for the disposal by the dump trucks that follow the tunneler through the tunnel.