It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Standard experimental techniques exist to determine the propagation speed of forces. When we apply these techniques to gravity, they all yield propagation speeds too great to measure, substantially faster than lightspeed. This is because gravity, in contrast to light, has no detectable aberration or propagation delay for its action, even for cases (such as binary pulsars) where sources of gravity accelerate significantly during the light time from source to target. By contrast, the finite propagation speed of light causes radiation pressure forces to have a non-radial component causing orbits to decay (the “Poynting-Robertson effect”); but gravity has no counterpart force proportional to to first order. General relativity (GR) explains these features by suggesting that gravitation (unlike electromagnetic forces) is a pure geometric effect of curved space-time, not a force of nature that propagates. Gravitational radiation, which surely does propagate at lightspeed but is a fifth order effect in , is too small to play a role in explaining this difference in behavior between gravity and ordinary forces of nature. Problems with the causality principle also exist for GR in this connection, such as explaining how the external fields between binary black holes manage to continually update without benefit of communication with the masses hidden behind event horizons. These causality problems would be solved without any change to the mathematical formalism of GR, but only to its interpretation, if gravity is once again taken to be a propagating force of nature in flat space-time with the propagation speed indicated by observational evidence and experiments: not less than 2x1010 c. Such a change of perspective requires no change in the assumed character of gravitational radiation or its lightspeed propagation. Although faster-than-light force propagation speeds do violate Einstein special relativity (SR), they are in accord with Lorentzian relativity, which has never been experimentally distinguished from SR—at least, not in favor of SR. Indeed, far from upsetting much of current physics, the main changes induced by this new perspective are beneficial to areas where physics has been struggling, such as explaining experimental evidence for non-locality in quantum physics, the dark matter issue in cosmology, and the possible unification of forces. Recognition of a faster-than-lightspeed propagation of gravity, as indicated by all existing experimental evidence, may be the key to taking conventional physics to the next plateau.
Why do photons from the Sun travel in directions that are not parallel to the direction of Earth’s gravitational acceleration toward the Sun?
Why do total eclipses of the Sun by the Moon reach maximum eclipse about 40 seconds before the Sun and Moon’s gravitational forces align?
How do binary pulsars anticipate each other’s future position, velocity, and acceleration faster than the light time between them would allow?
How can black holes have gravity when nothing can get out because escape speed is greater than the speed of light?
As viewed from the Earth’s frame, light from the Sun has aberration. Light requires about 8.3 minutes to arrive from the Sun, during which time the Sun seems to move through an angle of 20 arc seconds. The arriving sunlight shows us where the Sun was 8.3 minutes ago. The true, instantaneous position of the Sun is about 20 arc seconds east of its visible position, and we will see the Sun in its true present position about 8.3 minutes into the future. In the same way, star positions are displaced from their yearly average position by up to 20 arc seconds, depending on the relative direction of the Earth’s motion around the Sun. This well-known phenomenon is classical aberration, and was discovered by the astronomer Bradley in 1728.
...
If gravity were a simple force that propagated outward from the Sun at the speed of light, as radiation pressure does, its mostly radial effect would also have a small transverse component because of the motion of the target. ... the net effect of such a force would be to double the Earth’s distance from the Sun in 1200 years. There can be no doubt from astronomical observations that no such force is acting. The computation using the instantaneous positions of Sun and Earth is the correct one. The computation using retarded positions is in conflict with observations.
"In the simple newtonian model, gravity propagates instantaneously: the force exerted by a massive object points directly toward that object's present position. For example, even though the Sun is 500 light seconds from the Earth, newtonian gravity describes a force on Earth directed towards the Sun's position "now," not its position 500 seconds ago. Putting a "light travel delay" (technically called "retardation") into newtonian gravity would make orbits unstable, leading to predictions that clearly contradict Solar System observations.
In general relativity, on the other hand, gravity propagates at the speed of light; that is, the motion of a massive object creates a distortion in the curvature of spacetime that moves outward at light speed. This might seem to contradict the Solar System observations described above, but remember that general relativity is conceptually very different from newtonian gravity, so a direct comparison is not so simple. Strictly speaking, gravity is not a "force" in general relativity, and a description in terms of speed and direction can be tricky. For weak fields, though, one can describe the theory in a sort of newtonian language. In that case, one finds that the "force" in GR is not quite central--it does not point directly towards the source of the gravitational field--and that it depends on velocity as well as position. The net result is that the effect of propagation delay is almost exactly cancelled, and general relativity very nearly reproduces the newtonian result."
remember that general relativity is conceptually very different from newtonian gravity, so a direct comparison is not so simple. Strictly speaking, gravity is not a "force" in general relativity, and a description in terms of speed and direction can be tricky. For weak fields, though, one can describe the theory in a sort of newtonian language. In that case, one finds that the "force" in GR is not quite central--it does not point directly towards the source of the gravitational field--and that it depends on velocity as well as position.
The mathematical equations of general relativity are unique, but their physical interpretation is not. Confusion reigns over the difference between the field and geometric interpretations of GR, the meaning of gravitational force in a GR context, the distinction between gravitational waves and force variations, and the applicability of aberration to gravity. The geometric interpretation of GR, argued by Carlip, blurs these concepts.
Originally posted by mnemeth1
"gravity is not a "force" in general relativity"
LOL
I guess its all make believe then.
Van Flandern destroys Carlip's paper here.
I contacted Van Flandern for clarification about the quote he had given to the Spectator regarding Einstein's alleged tampering. "Basically," he answered, "the choice of coefficients of potential phi in the space-time metric is arbitrary. Einstein knew the unmodeled perihelion motion of Mercury, and therefore confined his attention to metrics that predicted this quantity correctly."
I asked Carlip whether this made any sense.
"No, it makes no sense at all. Van Flandern seems to have invented a free parameter where none exists. There is one free parameter, but it's just Newton's gravitational constant, G, and is fixed completely by the requirement that the theory reduce to Newtonian gravity in the weak-field, low-velocity limit. Once you've fixed that, everything else is completely determined." According to Carlip, "Van Flandern seems to be under the impression that there are a bunch of adjustable parameters in general relativity that can be fiddled with. This is certainly not true."
"As far as I can tell," he added, "Van Flandern simply doesn't understand the Einstein field equations."
Originally posted by Bedlam
You'll note he doesn't try it in a refereed publication
The Operational Control System (OCS) of the Global Positioning System (GPS) does not include the rigorous transformations between coordinate systems that Einstein's general theory of relativity would seem to require...
Originally posted by mnemeth1
reply to post by Gentill Abdulla
I'm well aware of what Einstein's theories say.
I'm also well aware that they can't explain why gravity propagates at a speed faster than light.
Originally posted by Gentill Abdulla
Spacetime is the fabric of our universe. The fabric is not restricted to our laws.
WHICH IS IN COMPLETE ACCORDANCE WITH EINSTEIN'S THEORIES!
Originally posted by Kandinsky
reply to post by mnemeth1
You're a bright guy, but I suspect you've misidentified ATS as a means to dismiss Einstein's theories in the wider academic world. I can only weigh the evidence and go with the consensus of established scientific evidence.
Perhaps you'd enjoy more critical and informed debate on a site dedicated to physics? Let's be honest, only a handful of ATSers are able to offer a cogent rebuttal to your 'Einstein nonsense' attacks.
Science is adversarial (loosely), dominant and emergent ideologies are a crucible from where new theories gain recognition. You're certainty in Einstein's flaws would gain a more critical audience elsewhere.
Originally posted by masterp
Usually, these kinds of disputes are solved via experimentation. Has there been an experiment that definitely proves one or the other?
As viewed from the Earth’s frame, light from the Sun has aberration. Light requires about 8.3 minutes to arrive from the Sun, during which time the Sun seems to move through an angle of 20 arc seconds. The arriving sunlight shows us where the Sun was 8.3 minutes ago. The true, instantaneous position of the Sun is about 20 arc seconds east of its visible position, and we will see the Sun in its true present position about 8.3 minutes into the future. In the same way, star positions are displaced from their yearly average position by up to 20 arc seconds, depending on the relative direction of the Earth’s motion around the Sun. This well-known phenomenon is classical aberration, and was discovered by the astronomer Bradley in 1728.
Yet another manifestation of the difference between the propagation speeds of gravity and light can be seen in the case of solar eclipses (Van Flandern, 1993, pp. 49-50). The Moon, being relatively nearby and sharing the Earth’s 30 km/s orbital motion around the Sun, has relatively little aberration (0.7 arc seconds, due to the Moon’s 1 km/s orbital speed around Earth). The Sun, as mentioned earlier, has an aberration of just over 20 arc seconds. It takes the Moon about 38 seconds of time to move 20 arc seconds on the sky relative to the Sun. Since the observed times of eclipses of the Sun by the Moon agree with predicted times to within a couple of seconds, we can use the orbits of the Sun and the Moon near times of maximum solar eclipse to compare the time of predicted gravitational maximum with the time of visible maximum eclipse.
In practice, the maximum gravitational perturbation by the Sun on the orbit of the Moon near eclipses may be taken as the time when the lunar and solar longitudes are equal. Details of the procedure are provided in the reference cited. We find that maximum eclipse occurs roughly 38±1.9 seconds of time, on average, before the time of gravity maximum. If gravity is a propagating force, this 3-body (Sun-Moon-Earth) test implies that gravity propagates at least 20 times faster than light.
First, we will calculate the acceleration predicted for any two stars if each star responds to the linearly extrapolated retarded position and velocity, but not acceleration, of its companion over one light time between the stars.....
Now we are ready to compare this prediction for binary pulsars PSR1913+16 and PSR1534+12 with the measured values of in the two best-observed cases. Orbital quantities are taken from (Taylor et al., 1992) – see Table I. The period change rate for PSR1534+12 is not yet seen, so the table shows the observational error of the measurement. At a glance, we see there is no possible match. The predicted period changes that would result if gravity propagated at the speed of light in a manner analogous to electromagnetic forces are orders of magnitude larger than the observed period changes. For PSR1913+16, they have the opposite sign as well. From PSR1534+12, we can set a lower limit to the speed of gravity as an electromagnetic-type propagating force: 2800.
Lastly, we note experimental evidence from neutron interferometers that purports to demonstrate a failure of the geometric weak equivalence principle, that gravity is due to a curvature of space-time. (Greenberger & Overhauser, 1980) This experiment confirmed the strong equivalence principle (local equivalence of a uniform acceleration and a gravitational field), but its results are incompatible with the geometrical weak equivalence principle because interference effects in quantum mechanics depend on the mass. This is because the wave nature of the neutron depends on the momentum of the neutron, which is mass times velocity. So all phase-dependent phenomena depend on the mass through the wavelength, a feature intrinsic to quantum mechanics.
Since the experiment confirms the applicability of quantum mechanics even in the presence of gravity, including this non-geometrical mass dependence, the experiment seems to be a step in the undermining of the purely geometrical point of view, and “tends to bother theorists who prefer to think of gravity as being intrinsically related to geometry”, according to the authors.
As for the Naval Observatory and GPS comments, I love this paper by the USNO on GPS calculations:
*snicker*
It turns out there is no difference between the effects predicted by GR and those of classical mechanics when calculating GPS orbits.
Originally posted by mnemeth1
Simply posting a paper written by Van Flandern, Peratt, Alfven, Thornhill, or Scott is enough to get you perma-banned immediately from the major physics boards.
I'm not joking, try it out yourself.
Let me know how far you get.
I posted this article:
knol.google.com...
In my ban message I received this reason: "crackpot"