It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Inside a Biological Computing Facility
What I think would be real interesting today is if we take a tour of a biological computing facility. Now, you have to use a little imagination on this tour. I'll be the tour guide. I want you all to imagine that you are computer engineers, and my job as a tour guide is to translate for you the biological names that we're viewing so you will understand them as computer engineers.
Now, there's another thing. You have to imagine yourself as being quite small, like, you know, maybe 1 micron tall, because biological things are really tiny. So if you're following me, I want to look inside a biological cell and try to identify those computing things which we can relate to our computers today with the name translations. Let's start with an overview. And let's take a human cell, because that's what we're studying most these days. Specifically, we're going to look at a human cell from the standpoint of how does it compute.
For the overview, when we look in the cell, the first thing we see is a big DRAM memory in the nucleus. It's called DNA. Then we look around the cell, and we see there are several thousand microprocessors. They are called mitochondria. And if we look further at how they work, they all share a common memory and they have two levels of cache. Now, you may not believe all this, but wait till we get into the details.
Let's look first at the big DRAM memory. Well, it's packaged in 48 bags. These are called chromosomes. Now, as we look at those we are a little puzzled because there are some little ones and some big ones and some middle-sized ones, and how did that happen?