It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
The finding could help solve other puzzles in the Martian landscape. Earlier models predicted that crescent-shaped sand dunes called barchan dunes should grow to at least 500 meters long — but many are only 100 meters.
And the Mars rover Opportunity has found sand ripples made up of particles only 100 micrometers in diameter, so small that scientists had expected them to stay aloft once kicked up.
The new model could explain both riddles by showing that splashing can keep particles moving at low wind speeds. Slow-moving sand grains don’t travel far and therefore make short dunes, but even tiny particles can get pushed into ripples, Kok says.
OP Article
The way sand grains knock each other around turns out to make all the difference, Kok says. Because Martian gravity and air density are so much lower than Earth’s, a small kick from the wind sends sand particles on Mars flying much higher, up to a meter off the ground. “It’s like playing golf on the moon,” Kok says. Particles get caught in stronger winds as they rise, causing them to pick up speed and ultimately slam into the ground, where they kick up more particles and start the cycle over. “This splashing process is really efficient,” Kok says. “It can keep saltation, or sand blowing, going on Mars at relatively low wind speeds.” These jumping sand grains can create ripples over time even without high sustained winds, he says.
Solar Wind Rips Up Martian Atmosphere
Nov. 21, 2008: Researchers have found new evidence that the atmosphere of Mars is being stripped away by solar wind. It's not a gently continuous erosion, but rather a ripping process in which chunks of Martian air detach themselves from the planet and tumble into deep space. This surprising mechanism could help solve a longstanding mystery about the Red Planet. "It helps explain why Mars has so little air," says David Brain of UC Berkeley, who presented the findings at the 2008 Huntsville Plasma Workshop on October 27th.