It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Humans might not be walking the face of the Earth were it not for the ancient fusing of two prokaryotes — tiny life forms that do not have a cellular nucleus.
UCLA molecular biologist James A. Lake reports important new insights about prokaryotes and the evolution of life in the Aug. 20 advance online edition of the journal Nature. Endosymbiosis refers to a cell living within another cell. If the cells live together long enough, they will exchange genes; they merge but often keep their own cell membranes and sometimes their own genomes.
Lake has discovered the first exclusively prokaryote endosymbiosis. All other known endosymbioses have involved a eukaryote — a cell that contains a nucleus. Eukaryotes are found in all multicellular forms of life, including humans, animals and plants.
"This relationship resulted in a totally different type of life on Earth," said Lake, a UCLA distinguished professor of molecular, cell and developmental biology and of human genetics. "We thought eukaryotes always needed to be present to do it, but we were wrong."
In the Nature paper, Lake reports that two groups of prokaryotes — actinobacteria and clostridia — came together and produced "double-membrane" prokaryotes. "Higher life would not have happened without this event," Lake said. "These are very important organisms. At the time these two early prokaryotes were evolving, there was no oxygen in the Earth's atmosphere. Humans could not live. No oxygen-breathing organisms could live." The oxygen on the Earth is the result of a subgroup of these double-membrane prokaryotes, Lake said.
This subgroup, the cyanobacteria, used the sun's energy to produce oxygen through photosynthesis. They have been tremendously productive, pumping oxygen into the atmosphere; we could not breathe without them. In addition, the double-membrane prokaryotic fusion supplied the mitochondria that are present in every human cell, he said.
"This work is a major advance in our understanding of how a group of organisms came to be that learned to harness the sun and then effected the greatest environmental change the Earth has ever seen, in this case with beneficial results," said Carl Pilcher, director of the NASA Astrobiology Institute, headquartered at the NASA Ames Research Center in Moffett Field, Calif., which co-funded the study with the National Science Foundation.
it would be cool if humans could do photosysthisis.
cept weed all be GREEN