It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Like something out of Terminator 2, researchers are developing techniques for warfare of the future to create materials that self-assemble or alter their shape, perform a function and then disassemble themselves. These capabilities offer the possibility for morphing aircraft and ground vehicles, uniforms that can alter themselves in any climate, and “soft” robots that flow like mercury through small openings to enter caves and bunker complexes.
Several university teams, including Harvard, Cornell, and MIT, are working on different approaches to create "programmable matter"—made of individual pieces that can self-assemble into tools or spare parts. One of the approaches being examined uses sheets of self-folding material that can form three-dimensional shapes on command.
A ferrofluid (from the Latin ferrum, meaning iron) is a liquid which becomes strongly polarised in the presence of a magnetic field.
Ferrofluids are colloidal mixtures composed of nanoscale ferromagnetic, or ferrimagnetic, particles suspended in a carrier fluid, usually an organic solvent or water. The ferromagnetic nano-particles are coated with a surfactant to prevent their agglomeration (due to van der Waals and magnetic forces). Although the name may suggest otherwise, ferrofluids do not display ferromagnetism, since they do not retain magnetization in the absence of an externally applied field. In fact, ferrofluids display (bulk-scale) paramagnetism, and are often described as "superparamagnetic" due to their large magnetic susceptibility. Permanently magnetized fluids are difficult to create at present.[1]
The difference between ferrofluids and magnetorheological fluids (MR fluids) is the size of the particles. The particles in a ferrofluid primarily consist of nanoparticles which are suspended by Brownian motion and generally will not settle under normal conditions. MR fluid particles primarily consist of micrometre-scale particles which are too heavy for Brownian motion to keep them suspended, and thus will settle over time due to the inherent density difference between the particle and its carrier fluid. These two fluids have very different applications as a result.
Real-life "Transformers" could soon be used by American soldiers on the battlefield.
The Pentagon's research arm, the Defense Advanced Research Projects Agency (DARPA), is well into the second phase of a project to develop "programmable matter" that could reshape itself to fit any situation, reports SIGNAL magazine.
Scientists at Tufts University have received a $3.3 million contract from the U.S. Defense Advanced Research Projects Agency (DARPA) to develop chemical robots that will be so soft and squishy that they will be able to squeeze into spaces as tiny as 1 centimeter, then morph back into something 10 times larger, and ultimately biodegrade.