It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
In a unique experiment on a galactic scale, millions of bacterial spores have been purposely exposed to space, to see how solar radiation affects them and the results supported the idea that not only could life have arrived on Earth on meteorites, but that considerable material has flowed between planets.
Closer to home, scientists have analyzed aerial dust samples collected by Charles Darwin and confirmed that microbes can travel across continents without the need for planes or trains - rather bacteria and fungi hitch-hike by attaching to dust particles. Their results clearly show that diverse microbes, including ascomycetes, and eubacteria can live for centuries and survive intercontinental travel.
In a paper published in Environmental Microbiology, Dr. Anna Gorbushina (Carl-von-Ossietzky University, Oldenburg, Germany), Professor William Broughton (University of Geneva, Switzerland) and their colleagues analyzed dust samples collected by Charles Darwin and others almost 200 years ago...
...In earlier experiments, Horneck and her colleagues used the Russian Foton satellite to expose 50 million unprotected spores of the bacterium Bacillus Subtilis outside the satellite. UV radiation from the Sun killed nearly all of the spores, and did so even when the spores were confined under quartz.
To test if meteorites might protect bacteria on their journey through space, Horneck and her colleagues mixed samples of 50 million spores with particles of clay, red sandstone, Martian meteorite, or simulated Martian soil and made small lumps a centimeter in diameter. Between 10,000 and 100,000 spores of the original 50 million survived and when mixed with red sandstone, nearly all survived, suggesting that even meteorites a centimeter in diameter can carry life from one planet to another, if they completed the journey within a few years. In a rock a meter across, bacteria could probably survive for millions of years.
In a separate experiment, another team ran computer models of giant impacts like Chicxulub. In the simulations, millions of large boulders were ejected from the earth. About 30 boulders from each Earth impact even reached Titan, and they entered Titan’s atmosphere slower than most meteors hit Earth’s atmosphere. Big rocks from Earth have no doubt reached Enceladus, as well....