It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Chemists have shown that it is possible to use solar energy, paired with the right catalyst, to convert carbon dioxide into a raw material for making a wide range of products, including plastics and gasoline.
Researchers at the University of California, San Diego (UCSD), recently demonstrated that light absorbed and converted into electricity by a silicon electrode can help drive a reaction that converts carbon dioxide into carbon monoxide and oxygen. Carbon monoxide is a valuable commodity chemical that is widely used to make plastics and other products, says Clifford Kubiak, professor of chemistry at UCSD. It is also a key ingredient in a process for making synthetic fuels, including syngas (a mixture largely of carbon monoxide and hydrogen), methanol, and gasoline.
...snip....
At least at first, such a process will not make a significant impact on reducing greenhouse gases in the atmosphere--that would take quite large-scale operations, Kubiak says. But "any chemical process that you can develop that uses CO2 as a feedstock, rather than having it be an end product, is probably worth doing." He adds that "if chemical manufacturers are going to make millions of pounds of plastics anyway, why not make them from greenhouse gases rather than making tons of greenhouse gases in the process?"
The biofuel of the future could well be gasoline. That's the hope of one biotech startup that on Monday described for the first time how it is coaxing bacteria into producing hydrocarbons that could be processed into fuels like those made from petroleum.
....snip.....
Producing hydrocarbon fuels is more efficient than producing ethanol, del Cardayre adds, because the former packs about 30 percent more energy per gallon. And it takes less energy to produce, too. The ethanol produced by yeast needs to be distilled to remove the water, so ethanol production requires 65 percent more energy than hydrocarbon production does.
The U.S. Department of Energy has set a goal of replacing 30 percent of current petroleum use with fuels from renewable biological sources by 2030, and del Cardayre says he feels that's easily achievable.
Researchers at the University of California, San Diego (UCSD), recently demonstrated that light absorbed and converted into electricity by a silicon electrode can help drive a reaction that converts carbon dioxide into carbon monoxide and oxygen.