It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
This video shows observations taken by NASA’s James Webb Space Telescope of a star (fixed in the center of the video) as Chariklo passes in front of it. The video is composed of 63 individual observations with Webb’s Near-infrared Camera Instrument’s view at 1.5 microns wavelength (F150W) obtained over ~1 hour on Oct. 18. Careful analysis of the star’s brightness reveals that the rings of the Chariklo system were clearly detected.
The spectrum of the system shows three absorption bands of water ice in the Chariklo system. Noemí Pinilla-Alonso, who led Webb’s spectroscopic observations of Chariklo, explained: “Spectra from ground-based telescopes had hinted at this ice (Duffard et al. 2014), but the exquisite quality of the Webb spectrum revealed the clear signature of crystalline ice for the first time.” Dean Hines, the principal investigator of this second GTO program, added: “Because high-energy particles transform ice from crystalline into amorphous states, detection of crystalline ice indicates that the Chariklo system experiences continuous micro-collisions that either expose pristine material or trigger crystallization processes.”
An occultation light curve from Webb’s Near-infrared Camera (NIRCam) Instrument at 1.5 microns wavelength (F150W) shows the dips in brightness of the star (Gaia DR3 6873519665992128512) as Chariklo’s rings passed in front of it on Oct. 18. As seen in the illustration of the occultation event, the star did not pass behind Chariklo from Webb’s viewpoint, but it did pass behind its rings. Each dip actually corresponds to the shadows of two rings around Chariklo, which are ~4 miles (6-7 kilometers) and ~2 miles (2-4 kilometers) wide, and separated by a gap of 5.5 miles (9 kilometers). The two individual rings are not fully resolved in each dip in this light curve.
blogs.nasa.gov...