It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
This month, MIT researchers announced they invented a way to shrink objects to nanoscale -- smaller than what you can see with a microscope -- using a laser. That means they can take any simple structure and reduce it to one 1,000th of its original size.
The miniaturizing technology, called "implosion fabrication," could be applied to anything from developing smaller microscope and cell phone lenses to creating tiny robots that improve everyday life.
The researchers say this technology could become easily accessible in the future; it's even something you could use at home or in a school because all the materials are nontoxic.
"It's pretty hard to imagine right now all the things we can make with this," Rodriques said.
Here's how it works: Using a laser, researchers make a structure with absorbent gel -- akin to writing with a pen in 3D. Then, they can attach any material -- metal, DNA, or tiny "quantum dot" particles -- to the structure. Finally, they shrink the structure to a miniscule size.
"It's a bit like film photography," explained graduate student researcher Daniel Oran. "A latent image is formed by exposing a sensitive material in a gel to light. Then, you can develop that latent image into a real image by attaching another material, silver, afterwards."
MIT engineers devised a way to create 3-D nanoscale objects by patterning a larger structure with a laser and then shrinking it. This image shows a complex structure prior to shrinking. MIT engineers devised a way to create 3-D nanoscale objects by patterning a larger structure with a laser and then shrinking it. This image shows a complex structure prior to shrinking.
In fact, Oran is a trained photographer, and the project began in 2014 when he and graduate student Samuel Rodriques, who has a background in physics, decided to collaborate.
The team discovered the method by reversing a common technique, originally developed by Boyden to enlarge images of brain tissue. Called "expansion microscopy," that process involves injecting a material into a gel and then making it larger and therefore easier to see.
originally posted by: ArMaP
a reply to: toms54
From what I understand of it, they shrink a 3D structure with the elements of what they want make small attached to that structure. When the structure is reduced the elements "converge" into the new small object.
originally posted by: watchandwait410
I couldn't read the whole article for some reason but is there a way to make the object normal size again?
Existing techniques for creating nanostructures are limited in what they can accomplish. Etching patterns onto a surface with light can produce 2-D nanostructures but doesn’t work for 3-D structures. It is possible to make 3-D nanostructures by gradually adding layers on top of each other, but this process is slow and challenging. And, while methods exist that can directly 3-D print nanoscale objects, they are restricted to specialized materials like polymers and plastics, which lack the functional properties necessary for many applications.
Furthermore, they can only generate self-supporting structures. (The technique can yield a solid pyramid, for example, but not a linked chain or a hollow sphere.) To overcome these limitations, Boyden and his students decided to adapt a technique that his lab developed a few years ago for high-resolution imaging of brain tissue. This technique, known as expansion microscopy, involves embedding tissue into a hydrogel and then expanding it, allowing for high resolution imaging with a regular microscope. Hundreds of research groups in biology and medicine are now using expansion microscopy, since it enables 3-D visualization of cells and tissues with ordinary hardware. By reversing this process, the researchers found that they could create large-scale objects embedded in expanded hydrogels and then shrink them to the nanoscale, an approach that they call “implosion fabrication.” As they did for expansion microscopy, the researchers used a very absorbent material made of polyacrylate, commonly found in diapers, as the scaffold for their nanofabrication process.
The scaffold is bathed in a solution that contains molecules of fluorescein, which attach to the scaffold when they are activated by laser light. Using two-photon microscopy, which allows for precise targeting of points deep within a structure, the researchers attach fluorescein molecules to specific locations within the gel. The fluorescein molecules act as anchors that can bind to other types of molecules that the researchers add. “You attach the anchors where you want with light, and later you can attach whatever you want to the anchors,” Boyden says. “It could be a quantum dot, it could be a piece of DNA, it could be a gold nanoparticle.”