It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
In January, a small research team at the University of Alberta engineered a cousin of the lethal smallpox virus called horsepox, using strands of DNA they received in the mail. The organism that they built wasn’t a threat to humans.
But when the scientists published their findings in scientific journal PLOS ONE, an uproar ensued.
The study’s publication “crosses a red line in the field of biosecurity,”..."The synthesis of horsepox virus takes the world one step closer to the reemergence of smallpox as a threat to global health security.”
For years, bioethicists and security experts have debated whether those closely guarded samples should be destroyed. But the widespread availability of the basic building blocks of life online means bad actors may not have to break into a remote lab and steal a smallpox virus sample to unleash a devastating act of biological terrorism. They may be able to assemble it themselves.
To help curtail the threat, the U.S. intelligence community, which has been tracking the potential for new biological technology to be used for nefarious ends for years, is working with a Boston-based company, Ginkgo Bioworks, that makes some of the most innovative genetic products in the world to help prevent a new class of dangerous biological weapons from ever being built.
Several companies can now tailor strands of DNA in ways that could revolutionize fields from agriculture to fragrances to medicine—and be profoundly dangerous in the wrong hands.
In June 2017, the Intelligence Advanced Research Projects Activity (Iarpa), a technology-research agency within the Office of the Director of National Intelligence, launched a program that it hopes will help keep cutting-edge biological technology away from bad actors.
To improve screening, Iarpa officials started a program that contracted with researchers...to create advanced algorithms that could flag and prevent harmful DNA orders from being completed.
In order to understand which genetic combinations might be harmful before they’re ever made in a laboratory, the Iarpa-led program brought in Ginkgo, which will develop algorithms that can predict which genetic sequences, even unknown ones, could potentially cause harm. Called Fun GCAT, an acronym for Functional Genomic and Computational Assessment of Threats, the program is seeking to create algorithms that would predict how genetic sequences are meant to function before they’re ordered, even if the combination being studied is new and not seen in nature.
Ginkgo designs organisms using genetic data, coding them in much the same way computers are programmed. The company is designing microbes that can live on the roots of plants and produce nitrogen, reducing the need for chemical fertilizer in some farming. It’s also working on coding microbes that produce rose oils for perfumes, no roses required.
To help curtail the threat, the U.S. intelligence community, which has been tracking the potential for new biological technology to be used for nefarious ends for years, is working with a Boston-based company, Ginkgo Bioworks, that makes some of the most innovative genetic products in the world to help prevent a new class of dangerous biological weapons from ever being built.