It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
A team successfully transplanted memories by transferring a form of genetic information called RNA from one snail into another.
The snails were trained to develop a defensive reaction.
When the RNA was inserted into snails that had not undergone this process, they behaved just as if they had been sensitised.
The research, published in the journal eNeuro, could provide new clues in the search for the physical basis of memory.
Traditionally, long-term memories were thought to be stored at the brain's synapses, the junctions between nerve cells. Each neuron has several thousand synapses.
But Prof Glanzman said: "If memories were stored at synapses, there is no way our experiment would have worked."
The UCLA professor of integrative biology holds a different view, believing that memories are stored in the nuclei of neurons. The paper might support hints from studies conducted decades ago that RNA was involved in memory.
The researchers gave mild electric shocks to the tails of a species of marine snail called Aplysia. The snails received five tail shocks, one every 20 minutes, and then five more 24 hours later. The shocks enhance the snail’s defensive withdrawal reflex, a response it displays for protection from potential harm. When the researchers subsequently tapped the snails, they found those that had been given the shocks displayed a defensive contraction that lasted an average of 50 seconds, a simple type of learning known as “sensitization.” Those that had not been given the shocks contracted for only about one second.
The life scientists extracted RNA from the nervous systems of marine snails that received the tail shocks the day after the second series of shocks, and also from marine snails that did not receive any shocks. Then the RNA from the first (sensitized) group was injected into seven marine snails that had not received any shocks, and the RNA from the second group was injected into a control group of seven other snails that also had not received any shocks.
Remarkably, the scientists found that the seven that received the RNA from snails that were given the shocks behaved as if they themselves had received the tail shocks: They displayed a defensive contraction that lasted an average of about 40 seconds.
“It’s as though we transferred the memory,” said Glanzman, who is also a member of UCLA’s Brain Research Institute.
As expected, the control group of snails did not display the lengthy contraction.
originally posted by: soulwaxer
The researchers see this result as a step towards alleviating the effects of diseases such as Alzheimer's or post traumatic stress disorder (PTSD).
originally posted by: 3n19m470
a reply to: soulwaxer
reminds me a little of the University of WASHINGTON experiments with crows.
there Might be a thread around here somewhere. but it seems to prove genetic, intergenerational memory. and the crows can actually access theirs. They can look at a person's face and know if that person harassed their ancestors.