It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom. It is not an attempt to violate any laws; it is something, in principle, that can be done; but in practice, it has not been done because we are too big.
Richard P. Feynman
[Queensland University of Technology] QUT scientists have found an exciting new way to manipulate and design materials of the future at the atomic level and change the way they behave at a larger scale that opens the way to new applications such as early cancer biomarkers.
...
"We discovered that a beam of energetic helium ions generated in a helium ion microscope rearranged a nanoporous anodized alumina material on the atomic scale and shrank its pores to various, unprecedented tiny sizes," Professor Ostrikov said.
"These tiny pores mean scientists could potentially 'sift' molecules into different sizes to study them individually. It could open the way to early detection of cancer, for example, through a blood test that could detect DNA produced by a cancer before the tumour developed.
"This new ion-assisted manipulation of matter on the tiniest of length scales completely changed the behaviour of the aluminium oxide: when we applied moderate exposure to helium ions, its pores shrank, when we increased exposure to the ions this normally brittle and porous ceramic turned into a superplastic and gained the ability to stretch more than twice without breaking."
originally posted by: darkbake
There was some UFO wreckage in a Roswell museum that included copper that was manipulated on an atomic level to change its properties, the material was immune to radar and there were a few other things. This is the first I've seen where our technology is doing something similar.
"These tiny pores mean scientists could potentially 'sift' molecules into different sizes to study them individually. It could open the way to early detection of cancer, for example, through a blood test that could detect DNA produced by a cancer before the tumour developed.
"Neutron spectroscopy measurements were crucial to demonstrating that in certain metals, the competition between various interactions may be resolved by the spontaneous formation of a state in which the electronic and magnetic properties alternate periodically," said Georg Ehlers, the ORNL scientist who performed spectroscopy measurements at SNS [Oak Ridge Spallation Neutron Source].
This periodic arrangement leads to interfaces between alternating material layers that are akin to interfaces in engineered heterostructures. However, the spontaneously self-assembling interfaces identified in this study have major advantages; they are intrinsically clean, and relevant parameters such as the interface thickness can be tuned in-situ via external parameters such as magnetic field or temperature.
The basic ingredients identified by Fobes and the team are common to several classes of quantum materials and suggest that these intrinsic and tunable interfaces may be more frequent. Learning to control the self-assembly of such intrinsic quantum interfaces, in turn, has the potential to revolutionize device design, where devices are not fabricated but spontaneously form via quantum engineering of the underlying atomic-scale interactions.
A potential revolution in device engineering could be underway, thanks to the discovery of functional electronic interfaces in quantum materials that can self-assemble spontaneously.