It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Beams are made of “trains” of bunches, each containing around 100 billion protons. These bunch trains are circulating at almost the speed of light in opposite directions and cross one another at the centre of the experiments. The intensity of the beams, in other words the number of proton bunches, was gradually increased to achieve 2040 proton bunches per beam yesterday...
As a result, the experiments are raking in the data. The integrated luminosity has exceeded the milestone of one inverse femtobarn earlier this week – already a quarter of the integrated luminosity recorded throughout 2015...
This performance is even more remarkable given that the chain of accelerators that feed the LHC faced a technical issue last week. A fault in a main power supply of the Proton Synchrotron (PS) accelerator stopped the accelerator chain for several days. PS, commissioned in 1959, is the third link in the chain of four accelerators that propel the protons before they are injected into the LHC. Power was back to the PS last Thursday.
The Super Proton Synchrotron (SPS), CERN’s second-largest accelerator, is celebrating its 40th birthday. But the 7-kilometre-circumference accelerator is not getting a break for the occasion: it will continue to supply the Large Hadron Collider (LHC) and several fixed-target experiments with protons and heavy ions.
The SPS began life in a particularly spectacular fashion. On 17 June 1976, the machine, a giant among its contemporaries, accelerated protons to 300 gigaelectronvolts (GeV) for the first time.
...
At present, for example, it supplies particles to the COMPASS, NA61/Shine, NA62 and NA63 experiments, and it will shortly start sending protons to the new AWAKE project
AWAKE (the Advanced Proton Driven Plasma Wakefield Acceleration Experiment) will be the first accelerator of its kind in the world. It is currently under construction, but hopes to test the concept that plasma wakefields driven by a proton beam could accelerate charged particles.
...
AWAKE hopes to start collecting physics data by the end of the year. Next the team will finalise installation of the experiment, the laser and the full plasma cell.
A new furnace arrived at CERN’s Large Magnet Facility last month and is currently being installed and tested.
...
Nb3Sn has been chosen for the next generation of superconducting magnets. The field achieved with this material can reach up to 16T. The production of such coils is complex as we must first wind the coils and then perform the heat treatment that allows the tin and niobium to react and turn into the superconducting Nb3Sn compound.” explains Friedrich Lackner, a project engineer who supervises the coil production for HL-LHC.
...
The new 32-metre-long furnace, called GL010000, will allow the heat treatment of coils with a length up to 11m and can reach temperatures up to 900°C providing a sufficient margin for future challenges.
With a larger data set now analysed, more precise measurements of the Standard Model processes and more sensitive searches for the direct production of new particles at the highest energy are possible. As an example, the 125 GeV Higgs boson, discovered in 2012, has now also been observed at the new energy of 13 TeV with higher statistical significance. In addition, both ATLAS and CMS experiments have made new precise measurements of Standard Model processes, especially looking for anomalous particle interactions at high mass, a very sensitive but indirect test for physics beyond the Standard Model.
...
ATLAS and CMS have also looked for any signs of the direct production of new particles predicted by Supersymmetry and other exotic theories of physics beyond the Standard Model, but no compelling evidence of new physics has appeared yet. In particular, the intriguing hint of a possible resonance at 750 GeV decaying into photon pairs, which caused considerable interest from the 2015 data, has not reappeared in the much larger 2016 data set and thus appears to be a statistical fluctuation.
The Large Hadron Collider’s (LHC) performance continued to surpass expectations, when this week it achieved 2220 proton bunches in each of its counter-rotating beams – the most it will achieve this year.
This is not the maximum the machine is capable of holding (at full intensity the beam will have nearly 2800 bunches) but it is currently limited by a technical issue in the Super Proton Synchrotron (SPS).
...
The SPS is currently experiencing a small fault that could be exacerbated by high beam intensity – hence the number of proton bunches sent to the LHC per injection is limited to 96, compared to the normal 288.
Today, CERN Director General, Fabiola Gianotti, and Chairman of the Atomic Energy Commission and Secretary of the Department of Atomic Energy (DAE) of the Government of India, Sekhar Basu signed an Agreement admitting India to CERN as an Associate Member. The Government of India still needs to notify CERN of its final approval for the Agreement to enter into force.
With its single proton and single electron, hydrogen is the most abundant, simple and well-understood atom in the Universe. Its spectrum has been measured to very high precision. Antihydrogen atoms, on the other hand are poorly understood. Because the universe appears to consist entirely of matter, the constituents of antihydrogen atoms – antiprotons and positrons – have to be produced and assembled into atoms before the antihydrogen spectrum can be measured. It's a painstaking process, but well worth the effort since any measurable difference between the spectra of hydrogen and antihydrogen would break basic principles of physics and possibly help understand the puzzle of the matter-antimatter imbalance in the universe.
Today's ALPHA result is the first observation of a spectral line in an antihydrogen atom, allowing the light spectrum of matter and antimatter to be compared for the first time. Within experimental limits, the result shows no difference compared to the equivalent spectral line in hydrogen. This is consistent with the Standard Model of particle physics, the theory that best describes particles and the forces at work between them, which predicts that hydrogen and antihydrogen should have identical spectroscopic characteristics.
…
ALPHA is a unique experiment at CERN's Antiproton Decelerator facility, able to produce antihydrogen atoms and hold them in a specially-designed magnetic trap, manipulating antiatoms a few at a time. Trapping antihydrogen atoms allows them to be studied using lasers or other radiation sources.
…
Antihydrogen is made by mixing plasmas of about 90,000 antiprotons from the Antiproton Decelerator with positrons, resulting in the production of about 25,000 antihydrogen atoms per attempt. Antihydrogen atoms can be trapped if they are moving slowly enough when they are created. Using a new technique in which the collaboration stacks anti-atoms resulting from two successive mixing cycles, it is possible to trap on average 14 anti-atoms per trial…
Last April, a ...stone marten jumped a substation fence at the Large Hadron Collider (LHC) near Geneva, Switzerland and was promptly electrocuted. Now, that same poor creature's corpse is going on display at the Rotterdam Natural History Museum in an exhibition titled Dead Animal Tales...
The stone marten is the latest dead animal to go on display at the museum. It joins a sparrow that was shot after it sabotaged a world record attempt by knocking over 23,000 dominoes; a hedgehog that got fatally stuck in a McDonalds McFlurry pot, and a catfish that fell victim to a group of men in the Netherlands who developed a tradition for drinking vast amounts of beer and swallowing fish from their aquarium. The catfish turned out to be armoured, and on being swallowed raised its spines. The defence did not save the fish, but it put the 28-year-old man who tried to swallow it in intensive care for a week....