It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
GPS has a new job. It does a great job of telling us our location, but the network of hyper-accurate clocks in space could get a fix on something far more elusive: dark matter.
Dark matter makes up 80 per cent of the universe's matter but scarcely interacts with ordinary matter. A novel particle is the most popular candidate, but Andrei Derevianko at the University of Nevada, Reno, and Maxim Pospelov at the Perimeter Institute in Waterloo, Ontario, Canada propose that kinks or cracks in the quantum fields that permeate the universe could be the culprit.
That's where GPS comes in. The network of satellites is about 50,000 kilometres in diameter, and is travelling through space – along with the entire solar system – at about 300 kilometres a second. So any time shift when the solar system passes through a cosmic kink will take a maximum of 170 seconds to move across network.
Other things could perturb GPS timekeeping, but only a signal from dark matter would have that signature, say Derevianko and Pospelov.
Derevianko is already mining 15 years' worth of GPS timing data for dark matter's fingerprints. If he doesn't find anything, he plans to continue the search using the Network for European Accurate Time and Frequency Transfer (NEAT-FT), a network of ground-based atomic clocks that is under construction in Europe. Each of these clocks is far more sensitive than a satellite clock.