It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
After decades of searching, physicists have finally confirmed the existence of low-energy neutrinos that are direct evidence for the first crucial step in the nuclear reaction that makes the Sun shine. While the detection validates well-established stellar fusion theory, future, more sensitive versions of the experiment could look for deviations from the theory that would reveal new physics.
But that assumption was challenged in an unexpected way by a group of researchers from Purdue University who at the time were more interested in random numbers than nuclear decay. (Scientists use long strings of random numbers for a variety of calculations, but they are difficult to produce, since the process used to produce the numbers has an influence on the outcome.)
Ephraim Fischbach, a physics professor at Purdue, was looking into the rate of radioactive decay of several isotopes as a possible source of random numbers generated without any human input. (A lump of radioactive cesium-137, for example, may decay at a steady rate overall, but individual atoms within the lump will decay in an unpredictable, random pattern. Thus the timing of the random ticks of a Geiger counter placed near the cesium might be used to generate random numbers.)
As the researchers pored through published data on specific isotopes, they found disagreement in the measured decay rates – odd for supposed physical constants.
Checking data collected at Brookhaven National Laboratory on Long Island and the Federal Physical and Technical Institute in Germany, they came across something even more surprising: long-term observation of the decay rate of silicon-32 and radium-226 seemed to show a small seasonal variation. The decay rate was ever so slightly faster in winter than in summer.
Was this fluctuation real, or was it merely a glitch in the equipment used to measure the decay, induced by the change of seasons, with the accompanying changes in temperature and humidity?
"Everyone thought it must be due to experimental mistakes, because we're all brought up to believe that decay rates are constant," Sturrock said. news.stanford.edu...