It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Several different species of bacteria can survive and reproduce in "hypergravity" more than 400,000 times stronger than that of the Earth, a new study reports. The find suggests that alien life could take root in a wide range of conditions -- and that it could survive the high G-forces imposed by meteorite impacts and ejections, making the exchange of life between planets a distinct possibility.
"The number and types of environments that we now think life can inhabit in the universe has expanded because of our study," said lead author Shigeru Deguchi, of the Japan Agency of Marine-Earth Science and Technology in Yokosuka.
The new study suggests that a wider variety of alien habitats may be open to life than scientists had imagined. The results even extend the possibility of life beyond planets, to the strange "failed stars" known as brown dwarfs, researchers said. After all, if Earth bacteria can breed in 400,000 G's, the 10-to-100 G's possibly found on a brown dwarf shouldn't be much of an impediment. And some brown dwarfs may be cool enough to support life as we know it, researchers said.
Scientists think meteorite-caused rock ejections can generate up to 300,000 G's, researchers said. The new study indicates that microbial life could survive those conditions and keep right on breeding
"If life does exist in other places in the universe, our study provides further evidence that it could spread within solar systems by the mechanism often discussed in panspermia hypotheses -- i.e., impact-based transport of meteorites between bodies of the same solar system,"
"No animal has survived open space before," says developmental biologist Bob Goldstein of the University of North Carolina at Chapel Hill, who was not affiliated with the study. "The finding that animals survived rehydration after 10 days in open space - and then produced viable embryos as well - is really remarkable."
Before this experiment, only lichen and bacteria were known to be able to survive exposure to the combination of vacuum and space radiation.
Stardust Space Probe - The link between Comets and Panspermia was investigated further with a NASA Launch performed by NASA beginning in 2004, entitled "The Stardust Mission". Ion Propulsion spacecraft was loaded with machinery to bring back lab samples from the tail of a comet. This published document from NASA entitled "NASA Researchers Make First Discovery of Life's Building Blocks in Comet". This article refers to the Glycine and other building blocks that have been found in comets. Comets travel through space with these frozen potentially reproductive materials, and the tail of the comets appear when gases melt in the presence of our sun.
On February 15, 2011, at 04:42:00 UTC, Stardust-NExT encountered Tempel 1 from a distance of 181 km (112 mi). An estimated 72 images were acquired during the encounter. These showed changes in the terrain and revealed portions of the comet never seen by Deep Impact. The impact site from Deep Impact was also observed though it was barely visible due to material settling back into the crater.
Originally posted by Illustronic
I in no way endorsed the Panspermia theory, I simply stated that discoveries feed the beliefs of those in that camp.
Personally I reside in the abiogenesis camp. 3.5 billion years is a very long time, and so is one billion years leading up to that point.